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ABSTRACT 

We propose a hybrid method f o r  computing the feedback gains in  l inear 

quadrat ic  regulator problems. The  method, which combines use of a Chandrasekhar 

type systcm with a n  i teration of the Newton-Kleinman form with variable 

acceleration parameter Smith schemes, is formulated so as to efficiently compute 

directly the feedback gains rather than solutions of a n  associated Riccati equation. 

The  hybrid method is particularly appropriate when used with large dimensional 

systems such as those arising in approximating inf ini te  dimensional (distributed 

parameter) control systems (e.g., those governed by delay-differential  and  partial  

different ia l  equations). Computational advantages of our  proposed algorithm over the 

s tandard eigenvector (Potter, Laub-Schur) based techniques a r e  discussed and  

numerical  evidence of the eff icacy of our ideas presented. 
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1 .  Introduction 

A great deal of e f for t  i n  recent years in  control of distributed systems has 

focused on approximation techniques (for example, see [1]-[6], [8], [ l  I]-[14], [16], [18], 

[21], [22], [24], [26], [32]) to reduce inherently inf ini te  dimensional problems to (large) 

f in i te  dimensional analogues. Relatively little attention has been given to the 

development of efficient computational methods fo r  the resulting large but  f ini te  

dimensional control problems. In  this paper we consider such questions fo r  one 

classical formulation of the feedback control problem, the well-known linear quadrat ic  

regulator (LQR) problem. 

There  a re  several approaches one can take in  such a n  endeavor. With the 

emergence of new computer architectures (vector and  parallel), one excit ing possibility 

involves the development of new algorithms to be used with nonsequential computers. 

While we a re  currently investigating ideas i n  this direction, our  presentation here is 

to report  on some of our effor ts  to develop better algorithms fo r  use with 

conventional serial computers. 

As is well-known, the LQR problem can be reduced to the solution of a 

matrix Riccat i  equation in  order to construct the feedback gain matrix.  The  most 

widely available method fo r  solution of the Riccati  equation is the Potter method 

[30], which is based on obtaining the eigenvectors and  eigenvalues of a n  associated 

2nx2n Hamiltonian system when the underlying dynamical control system is of 

dimension n. A rclated, but improved version involving computation of Schur vectors 

fo r  the system was proposed by Laub in [27]. While both of these "eigenvector" 

methods can be used satisfactorily ( for  a discussion of real advantages offered by the 

Laub-Schur approach over Potter's method, see [27]) fo r  systems with n relatively 

small, say n < 100, the computational effort  (and time) grows like n 3  and  becomes 

prohibit ive fo r  large systems. More recently, the idea of using Chandrasekhar systems 
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([9], [20], [33, ~.304-310], [36]) when the number of states is large compared to the 

number of control inputs (exactly the situation in  a number of cases where one 

approximates a distributed system) has been suggested by a number of authors [33, 

p.3091, [7], [8], [17], [31]. However, as we shall discuss below, there can be numerical 

difficulties in using the Chandrasekhar approach. On the other hand, i t  is known 

that  iterative methods such as the Newton algorithm as formulated by Kleinman in  

[23] can be qui te  efficiently implemented (even f o r  some large systems) if good 

init ial  estimates a r e  provided and if  one can solve efficiently the resulting Lyapunov 

equations. In this presentation, we discuss the formulation and  numerical testing of a 

hybrid method that  represents a n  attempt to combine the good features of the 

Chandrasekhar approach (growth like n in computational effor t )  with those of the 

Newton-Kleinman (quadratic convergence when good init ial  estimates a r e  provided) 

along with innovative use of the Smith algorithm fo r  solution of Lyapunov 

equations. 

We expect these ideas to be quite useful in  design of control laws f o r  some 

of the models currently being investigated i n  connection with large flexible structures 

as well as i n  some of the population dispersal and  control studies that  we are  

currently pursuing with biologists and ecologists. Some of the large flexible structurcs 

involve rather sophisticated distributed parameter models (e.g. see [4], [34]), especially 

when one wishes to include complicated damping mechanisms involving time or 

spatially rclated hysteresis [6], [34] or nonlinear effects [19]. For such models, the 

computational tasks can be rather demanding whether one is carrying out parameter 

identification [3] or feedback control calculations with tradit ional eigenvector based 

methods (the authors of [6] have indicated cxperiences with runs requiring 9 hours of 

VAX time when using a n  approximate system with dimension equivalent to n = 

238). 

For  our presentation, we assume that one has used their  favorite 
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approximation scheme (finite-elements, spline, spectral, etc.) to reduce the problems of 

interest to a n  LQR problem with finite diniensional system. More precisely, 

throughout our  discussions we consider the LQR problem: minimize the cost 

functional 

subject to the state dynamics 

i ( t )  = Ax(t) + Bu(t) , ~ ( 0 )  = x ~ .  

Here A E Rnx", B E RnXm, and  C E RPxn. (We have, without loss of generality, fo r  

our discussions here normalized our problem so that the control term in the cost 

functional (1.1) appears with a weighting matrix I.) We shall assume that  (A,B) is 

stabilizable a n d  (C,A) is detectable [ 2 5 ] ,  [37]. Then the optimal feedback control fo r  

the LQR problem involving (1.1) is given by 

u(t) = -BTPx(t) 

where P is the unique non-negative symmetric solution of the algebraic Riccati 

equation 

(1.2) ATP + PA - PBBTP +. cTc = 0. 

In this paper we propose a n  algorithm which leads to direct  calculation of the 

feedback gain matrix K = BTP without computation of P. In  addition to  providing 

substantial savings in  computational time over eigenvector methods, our  algorithm 

requires much less storage and  can easily be implemented to take advantage of 

special structures (e.g. sparsity) in  the system matrix A. 

To outline the steps in  our algorithms, we f i rs t  recall that  the optimal 

feedback gain K is given by the limit K = lim K(t) as t 4 -a of solutions of the 

Chandrasekhar system [ 9 ] ,  [20] 
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K(t) = -BTLT(t)L(t) , 

L(t) = -L(t)(A-BK(t)) , L(0) = C, 

K(0) = 0 
(1.3) 

where K E RmXn and L E Rpxn. In  fac t  (see [20], [37]) P = l im If LT(s)L(s)ds as t -, 

--. The  first step in  the proposed hybrid algorithm involves a numerical  integration 

of (1.3) backward in time on an  appropriate interval [-t,O]. For the second step, the 

value K(-t,) obtained through this numerical integration of the Chandrasekhar system 

is then refined by use of the Newton-Kleinman algorithm [23], if we use K(-tf) as a n  

init ial  value K O  f o r  the Newton method. 

To  motivate our effor t  in  these two steps, we note tha t  the convergence 

K(t)  + K as t + -QD can be very slow when the eigenvalues of A-BK lie close to the 

imaginary axis. Moreover, L=O, K, arbi t rary a re  solutions in the asymptotic l imit  

sense to (1.3). That  is, if we denote by f(K,L) the right side of system (1.3), then K, 

arbi t rary and L=O are solutions of f(K,,L) = 0. Hence K(t)  + K,, L(t) + 0 as t + -@ 

doesn't, i n  general, have a unique limit numerically. Thus, as is pointed out in  [33,p. 

316-3181, if one is to use the Chandrasekhar approach alone, one needs a very 

accurate numerical solver fo r  (1.3). This can be computationally quite expensive if we 

are  dealing with a large system and/or  a s t i f f  system. Hence, we propose to use a 

ra ther  crude, fas t  integration method for  the Chandrasekhar component of our 

algorithm and take the resulting numerical solution K(-t,) as a start-up value fo r  the 

Newton iterations. If this crude estimate f rom the Chandrasekhar step is a 

sufficiently good init ial  guess, then we can expect to meet the Newton-Kleinman 

requirements that  A-BK, be a stability matrix and  to obtain quadrat ic  convergence in  

this second component of the algorithm. 

The f i r s t  step of our hybrid method requires the solution of n(rn+p) 

simultaneous equations, while each i teration of the usual Newton-Kleinman step 

requires the solution of a Lyapunov equation for  the nxn symmetric estimates of P. 
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However, as we shall see below, one can use factorization ideas [20] and  the Smith 

method [35] for  Lyapunov equations to reformulate the  Newton-Kleinman method as 

a direct  i terative method for  the mxn gain K,  thereby providing additional 

i computational advantages. To speed up  our calculations and  improve convergence in  

the Smith algorithm, we propose a variable stepsize Smith method to solve the 

Lyapunov equations as described in  Section 4 below. I n  Section 2 we outline a 

numerical  scheme for  the Chandrasekhar system, while the reformulated 

Newton-Kleinman iterative procedure to compute directly the gain K is detailed in  

Section 3. Finally, in  Section 5, we discuss fur ther  some advantages and  disadvantages 

of the proposed algorithm and  report on our experience with several numerical 

examples to  i l lustrate the feasibility of our  hybrid approach. 

I 
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2. Numerical Solution of the Chandrasekhar Svsteni 

We return to consider more closely the Chandrasekhar system: 

(2.1) K(t)  = -BTLT(t)L(t) , K(0) = 0 

(2.2) 

where A E Rnxn, L,C E RPxn, and K,BT E RmXn. We f i rs t  observe that  the second 

equation (2.2) is l inear i n  L. In  cases where A arises f rom a discretization or 

approximation of partial  differential  equations, equation (2.2) tends to be a st iff  

system and  thus i t  is advisable to use an  implicit numerical scheme. We propose here 

the second order Adams-Moulton algorithm [ 10, p.2351. A second observation is that  

the right hand side of equation (2.1) is independent of K and  thus an  explicit 

scheme is appropriate; we propose the second order Adams-Bashforth algorithm [ 10, 

p.2261. 

L(t) = -L(t)(A - BK(t)) , L(0) = C , 

These observations lead us to propose the following algorithm fo r  the 

Chandrasekhar system (2.1), (2.2): Given a step size h>O, approximations Ki and Li to 

K(-ih) and  L(-ih) a r e  generated by 

where K O  = 0 and  L-, = Lo = C. 

Several remarks may be useful a t  this point. 

(Remark 1)  

(Remark 2) 

The stiffness of the matrix A dictates the choice of stepsize h. 

The predicted values K!:! and  the corrected values satisfy 
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and  this relationship can be used f o r  stepsize refinement, i.e., to give local bounds 

depending on stepsize which can be used in error control. 

(Remark 3) The  formula (2.5) can be rewritten as 

where Ai I A - BKf:k . Defining H = I - -A h we have that  I - -Ai h = H + -BKf$k h 
2 2 2 

where B E RnXm and  Kf:k E RmXn . Thus by the Sherman-Morrison-Woodbury 

formula [29, p.501 (used frequently when updating an  nxn matr ix  by rank  m 

matrices) 

-1 h i  h (0) -1 (0) 
(I - pi) = ~ - 1  - -H- B(I + - K ~ + ~ H - ~ B )  K ~ + X H - ~  

2 2 
(2.8) 

where I + hKf",H-'B E Rmxm. The matrix Kf;kH-l i n  (2.8) can be computed by 2 

(0) 
K ~ + % H - ~  = K ~ H - ~  + ! @ B T L T L ~  2 2  - 2 WL:, L ~ - ~ H - ~ )  

K ~ + ~ H - ~  = K,H -l + $B*L;+~L,,~H-~ + B T L T L ~ H - ~ ) .  
(2.9) 

Hence we see f rom (2.7) - (2.9) that  the step (2.5) only involves the operation LiH-' 

plus inversion of a n  mxm matrix I + Kf:k H-lB. Thus the step (2.5) can be 

reformulated so that  i t  requires only an mxm matrix inversion plus matrix-vector 

multiplications if the LU decomposition of H = I - -A h is computed a priori. This 

procedure can be most advantageous computationally when m and  p a re  small 
2 

compared to n. 

(Remark 4) For some problems one might wish to use a completely implicit scheme 

in  place of (2.3) - (2.6) to enhance stability and  reduce sensitivity to  step size choice. 

Then one might consider iterations KF+i , Lfc; generated by 
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( j )  h (j) (j-1) 
Li+l = Li + z(Li+l + L i ) ( A - B K i + ~  ) 

(j 1 h T (j)T ( j )  T T  
Ki+l = K i  + #B Li+lLi+l  + B LiLi) 

c i )  ( j )  
K,+M = + Ki)/2 

and  thus produce iterates with limits (as j -, 00) Ki+l ,  Li+l satisfying 

Li+l = Li + $Li+l + Li)(A-B(Ki+, + Ki)/2) 

Ki+l  = K i  + $B Li+,Li+, + B Li Li) . T T  T T  

2 
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3. An Iterative Method for  Computing the Optimal Feedback Gain K 

A widely used i terative method for  f inding the non-negative solution of the 

algebraic Riccati  equation (1.2) is Newton’s method as modified by Kleinman [23] .  We 

show tha t  this method can be reformulated so that,  when combined with a factored 

form of the well known Smith method [35], one can compute directly a sequence of 

iterates K i  f o r  the feedback gain K. 

First  we recall the Newton terative algorithm as formulated by Kleinman: 

(1) Choose a gain matrix K O  so that  A-BK, is a stabil i ty matrix;  

(2) Update  K ,  by K,+l = BTP, where Pi is the solution of the Lyapunov equation 

( A - B K J ~ P ,  + PJA-BK,) + K’K, + cTc = 0. 

I t  can be shown that  0 < 6 Pi f o r  any i, and  P = lim Pi where the 

convergence is quadratic.  This  algorithm can be viewed as a n  i terative method for  

the gain K,  i.e. K = lim K,  where Ki+l = F(Ki) with F(K) = BTP and  P is the  

solution of the  Lyapunov equation: 

(3.1) ( A - B K ) ~ P  + P(A-BK) + K ~ K  + cTc = 0. 

Thus, i n  order  to calculate F(K) one has to solve the Lyapunov equation (3.1) f o r  the 

symmetric matr ix  P. However, one can form an  alternative version that allows one to 

directly calculate F(K) using the Smith method fo r  a Lyapunov equation i n  X of the 

form 

(3.2) 

where S E Rnxn 

STX + XS + DTD = 0 

is a stability matrix and  D E Rpxn. 

To this end, we replace step (2) in  the Newton-Kleinman method by: 

(2 ’ )  For  i > 1, update  K,  by Ki+l = Ki - BTZ, where Zi = Pi-1 - Pi is the solution of 

the Lyapunov equation 

(3.3) (A-BKJTZ, + z,(A-BK,) + D’D, = o 
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with Di I Ki - Ki-,. 

The method with ( 2 ' )  offers  several advantages over tha t  using (2). The  

Lyapunov equation in ( 2 ' )  has fewer  inhomogeneous terms than  does the one in  (2) 

and  the term Di has rank  m which depends only on the number of inputs (controls) 

to the system. In the proposed modified Smith method described below, one is able 

to compute directly the mxn update matrix J' = BTZi without computing Zi (see (3.12) 

below). Since Zi -. 0 as i -, Q) is expected, choosing the s tar t -up value Ja = 0 in the 

factored Smith algorithm (where J' = BTZi is computed as the l imit  as k -, 0) of a 

sequence Jk) is a natural  as well as convenient choice. 

Note tha t  the step ( 2 ' )  requires that  one have Z, = Po - P, in  hand and  

hence we must start  this procedure with Po, P, (and K,,K,) given whereas (2) requires 

only tha t  one s tar t  with KO given. Then  K, is computed by K, = BTP, with Po the 

solution of 

(A-BK,)~P,  + P,(A- BK,) + ~ ; f  K, + cTc = 0. 

Since our Smith algorithm below is formulated to solve Lyapunov equations of the 

form (3.2), we can, to maintain this form, initially solve the equation twice. That  is, 

if we solve for  Z, the solution of 
I 

- 
(3.4) ( A - B K , ) ~ , ,  + z,(A-BK,) + K; K, = o 

1 

and fo r  Z, the solution of 

T -  T 
(3.5) (A-BKJ Z, + Z,(A-BK,) + C C = O , 

then we can obtain K, by K, = BTZ, + BTZ, . Since the Smith method as 

formulated here actually returns BTX where X is the solution to (3.2), we thus will 

use this Smith algorithm twice (with S = A-BK,), once with DTD = K;fK,, once with 

DTD = CTC and  then simply add  the solutions to obtain K,. 

We turn next to the desired factored form of the Smith method as applied 

to equation (3.2). Let X, bc a n  arbi t rary nxn symmetric matrix and  let a sequence 
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{ x k }  of nxn symmetric matrices be generated by 

(3.6) x k + l  = uTxkur + yr 9 

where r is a postive constant ( the Smith stepsize) and  

-1 
(3.7) U, = (I-rS) (I+rS) 

(3.8) 

Then one can argue that  {X,} converges to X, the  solution of (3.2). 

Yr = 2r(I-rST)-, DTD(I-rS)-, . 
The  method and  

its analysis is based on the observation that  for  any positive constant r, the  equation 

(3.2) is equivalent to 

x = U T X U ,  + Yr 

which can be used to def ine a contraction map i n  the obvious manner. 

We modify this s tandard formulation of the Smith method to  suit  our 

particular needs here (computing BTX instead of X). From (3.6) we have 

x,+, - xk = u T ( x k  - X,_,)u, , k > 1. 

Hence, if X, - Xk-, = MZM, (Le. if  we have a factorable difference),  then 

Xk+l X, = UT MZ MkU, = (MkU,)T(MkUr). 

If the start-up value X, is zero, then we can wri te  

(3.9) X ,  - X, = 2rMTM1 , M, f D(I-rS)-' . 

By induction on k, (3.6) is then equivalent to 

(3.10) Mk+l = MkUr 

(3.1 1) x k + l  = xk + 2rM;f+lMk+l 

In this manner BTX can be obtained as the l imit  of J, = BTX, where J, is generated 

by 

J,,, = J, + 2rBTM~+,M,+, . 

Thus, the update step ( 2 ' )  is carried out  by the following Smith algorithm: 

(3.1 2)( i) 

(3.12)( ii) 

Set Si = A-BK, and D = Ki  - Ki-,; 

Choose a positive constant r and  form U, and  M, by (3.7) and  (3.9) 
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with S = Si ; put J, = 0 and  J, = J, + 2rBTMTMl. 

Iterate fo r  k = 1, 2, . . . , on 

Mk+l = MkUr 

Jk+l = J k  
T T  

+ 2rB Mk+l'k+l ' 

In summary, we have described in this section a Newton-Kleinman scheme 

combined with the Smith method for  the resulting Lyapunov equation a t  each step in  

the Newton-Kleinman. We have reformulated the Newton-Kleinman iteration and  

factored the Smith algorithm so as to result in  algebraic savings in  computing 

directly the gain estimates Ki. 
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3. The  Smith Method and  Variable Stepsize 

As is well-known, the rate  of convergence in  the Smith method discussed in  

the last section depends upon the choice of the acceleration or step parameter (See 

[33, p.291-2971 fo r  several discussions. Note that  our parameter r is the negative 

reciprocal of the parameter in  Russell's discussions). T o  increase speed in  

convergence, one may employ the accelerated Smith method [33], [35] which can yield 

quadrat ic  convergence as compared to the l inear convergence obtained with (3.6). 

However, unlike (3.6), the accelerated Smith method is not self-correcting [33] and  

here we propose to speed up  convergence in a n  alternative way which has proved 

both reliable and  eff ic ient  i n  some of our numerical tests. Specifically, we propose to 

use a succession of acceleration parameter values ri (much in  the spiri t  of other 

well-known iterative methods such as alternating directions [ 151, [28]) to accelerate 

convergence in  the basic Smith method. Our formulat ion of this ''variable stepsize" 

Smith method is based upon the observation that  fo r  f ixed r > 0 and  k 3 1, the 

Smith algorithm can be writ ten as 

(4.1) 
STX, + X,S + DTD = E, 

. ,  
E, I (I + rS)TMz Mk(I + rS) 

where M, is defined by (3.9) and  (3.10). To see this, we note that  f rom (3.6) we 

have 

(I - rS)TXk(I - rS) = (I + rS)TXk-l(I + rS) + 2rDTD , 

or 

(I + rST)Xk(I + rS) - (I - rS)TXk(I - rS) + 2rDTD 

= (I + rS)T(Xk - Xk-l)(I + rS) . 

Hence, f rom (3.11) we obtain 

2 r ( sTxk  + X,S + D ~ D )  = 2r(1 + rS) T T  M,M,(I + rS) 

which implies (4.1). Moreover, f rom (3.9) and (3.10) we have 
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E, = (U, T k T  ) D D(UJk , k 3 1 . (4.2) 

Thus, i f  we use the  i teration (3.6) with acceleration parameter r l  fo r  k,  iterates, we 

obtain a n  iterate X(') and  equation error E(1) satisfying 

sTx(1) + ~ ( 1 ) s  + DTD = ~ ( 1 )  

(4.3) 

Let us define the difference = X - X ( l )  where X is the sought-after solution of 

(3.2). Then it is readily seen that  Z(l )  satisfies a Lyapunov equation similar to that  

of (3.2) : 

(4.4) STC + IS + E(') = 0. 

If we next apply the i teration (3.6) k,  times with acceleration parameter r 2  to the 

residual equation (4.4) we obtain 

(4.5) STX(2) + X(2)S + E(') = E(,) 

where X(,) is the f inal  i terate using r2  and  the equation error E(2) is given by 

If we proceed to  def ine the difference C(,) = X - (X( l )  + X(2)),  then f rom (4.4) and  

(4.5) we see that  C(,) satisfies a Lyapunov equation 

STE + IS + E(,) = 0 . 
We continue this procedure, using a sequence of acceleration values (ri} along 

with corresponding i teration counts (ki} to produce a sequence {X(')} of nonnegative, 

symmetric matrices. For i 3 1, we have 

(4.6) STX(') + X(')S + E(i-1) = E(') 

(4.7) E(') = (UT),' E(i-l)(Ur.fi , E@) DTD . 

Thus, if kj E k X('), then X j  satisfies 
1 1 

i = l  

(4.8) sTXj + Xjs + DTD = ~ ( j )  

and  hence Xj d X and kj-l < Xj , j 3 1. 
- 

Using arguments similar to those in  [33, p.291-2971 one can show tha t  f o r  
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0 < L d r d R, with L, R positive constants, there exists a constant w, 0 < w < 1, 

depending only on and  R, such that  fo r  w < p < 1, 

IU: I E M(p)pk , k = 0, 1, . . . , 
where M(p) is independent of r. 

exists an  integer k(C) such that  for  k, 3 k(G) , i 3 1, 

Thus, if r. d ri d R, then for  any  0 < E < 1, there 

(4.9) 

Hence, using (4.7) we have 

IE(j)I < (1-E)2j lD12 

so that  E(j) 4 0 as j + ~1 and therefore Xj X as  j 4 a. 

For the hybrid method proposed in  this paper, we have combined the 

variable stepsize method just outlined with the reformulated Smith method of (3.12). 

We then obtain the following algorithm for solving fo r  the feedback gains K; 

Algorithm (4.10): 

Set Si = A - B K ,  D, = Ki - K,-, and  J, = 0. For given acceleration parameters rl, 

r,, . . . , and iteration count indices k,, k,, . . . , we iterate on j = 1, 2, . . . , in  

the following steps: 

(4.1 0 b) 

(4.1 Oc) 

(4.10a) Compute Ur. = (I - rjSi)-'(I + rjSi) and  
1 

M, = D ~ ( I  - rjSi)-l , 

J, = J , + 2rjB T T  MIM, 

Iterate fo r  k = 1, 2, . . , , k - 1 in  

Mk+l = MkUr j 
T T  

J k + l  = J k  + 2rjB Mk+lMk+l 

Compute Dj+, = M k ( I  t rjSi), set J, = J and  return to (4.10~1) with 
j kj  

j = j t l .  
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The  steps in Algorithm (4.10) are  to be repeated, i.e. i teration through 

r,, r,, . . . , until  some convergence criterion is met. In performing the steps in  

(4.10b), one can use the Sherman-Morrison-Woodbury formula in  a procedure such as 

that  outlined in (2.7) - (2.9) in  section 2. 

As is of ten the case in  variable stepsize algorithms, the choice of the 

acceleration parameters rl, r,, . . . , and the associated i teration counts k,, k,, . . . , 
provides both freedom and some frustrat ion in the search f o r  "best" choices. If one 

follows the guide provided by AD1 methods (see [15, p.37]), one might choose a set 

of values r j  to be used in  some cyclic order. The  best choices of values fo r  the r j  

of ten depend on the eigenvalues of Si = A - BK,. For example, consider the case 

where Si has only real eigenvalues Xj, each with multiplicity mj, j = 1, 2, . . . , m. 

Then a choice of r j  = - l /Aj  and  k j  = mj  in the  algorithm produces convergence in  a 

f in i te  number (m) of steps. That  is, this choice yields E(m) = 0 in (4.8). 

Of course, the complete eigenstructure of Si will not be known (nor do  we 

suggest that  any sophisticated analysis along these lines be included with each use of 

Algorithm (4.10) to obtain the gains Ki). A possible alternative is to use one of the 

polynomial acceleration methods [15, Chp 3, 41. 

In  closing this section, we note that  the analogies of our  variable step Smith 

method with the AD1 methods used to solve partial  different ia l  equations can be 

made a little more precise. Briefly, in  AD1 spliting methods [28, p.146-1481, one 

attempts to solve a discretization of the evolution equation 

& = A @ + f  

when A 3 0 can be writ ten A = A, + A, wi th  Ai b 0 (for  example, factored into 

components corresponding to spatial  discretizations in the x and  y directions 

respectively for a n  equation in  a two dimensional spatial  domain). This  can be shown 

[28, p.1501 to lead to an i terative scheme 
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(4.1 1) ( I  + -A,)(I h + !!Add+’ = (I - ?A,)(’ h - !!A,)$ + h f j  
2 2 2 

where the index j is related to time stepping. On the  other hand, if one considers 

the Smith method (3.6)-(3.8) for  

STX + XS = F 

and chooses r = one obtains the iteration 2-’ 

(4.12) (I - $T)Xj+l(I - %) = (I + kST)XJ’(I + %) + h F  . 
2 2 2 

In 

the 

A1 

hese i terations one may identify the nxn matrix X = [x,, . . . , xn], xi E R” and  

n2  vector @ = column I f  we then ident i fy  A,@ with -STX (ix., 

= - I@ST) and A,@ with -XS (Le. A, = -S@I), we can immediately see the 

[x,, . . . , xn]. 

equivalence between (4.1 1) and (4.12). 
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5 .  Summnrv Remarks and  Numerical Examples 

I n  the prcceeding sections we have presented a n  algorithm which of fers  some 

def ini te  advantages in  computing directly the feedback gains K for  high dimensional 

LQR problems such as those arising in  approximating partial  or delay different ia l  

equation control problems. As we shall see with several numerical examples in  this 

section, i t  can substantially outperform standard eigenvector methods on such 

problems. As we have pointed out, a fundamental  algebraic operation (in both the 

Chandrasekhar update (2.6), (2.7) and  in  the reformulated Smith methods (4.10b)) 

involves computation of 

(5.1) 

where L and K are  pxn and  mxn matrices respectively. Our algorithm uses the 

Sherman-Morrison-Woodbury formula which can provide significant computational 

savings when m and  p a re  small compared to n. For systems involving sparse 

matrices A (a frequent occurence in many approximation schemes), the needed 

calculations can be carried out  quite efficiently. 

L(I - r(A - BK))-l 

We fur ther  note that  the Chandrasekhar and  Newton-Kleinman-Smith 

components as formulated in our algorithm lead to ready estimates between the t rue 

gain K and  the iterates Ki in  terms of equation errors in  the steps being performed. 

One component (the variable step Smith) of the algorithm is most effectively 

carried out if one possesses some a priori  knowledge of bounds on the closed loop 

eigenvalues. If the closed loop eigenvalues lie close to the imaginary axis, then 

convergence i n  the Smith method can be very slow. Eigen or Schur vector methods 

[27], [30] a re  less sensitive in  this regard. For low order systems, the Schur vector 

approach is more reliable and  less expensive computationally than  our  algorithm. Our 

hybrid algorithm depends critically on a number of choices (e.g., stopping criteria i n  

the Newton-Kleinman and Smith components, stepsize sequence (r j> and  i teration count 
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- 
0 
0 

1 
0 - 

sequence (kj} i n  the variable step component) to be made by the user and  the "best" 

choices a re  heavily problem dependent. Hence one can expect our hybrid algorithm to 

- 
0 
0 

0 
I 

require more experimentation and  f ine  tuning than other more s tandard methods. 

However, as we shall demonstrate with examples, for  the case where n is large 

compared to m and  p, i t  can offer  considerable computational savings with no loss in 

accuracy over the methods mentioned above. 

We have tested (and a re  continuing our effor ts  i n  this direction) our hybrid 

algorithm on several numerical examples. We shall report  on just two of these here to 

i l lustrate our findings. All our computations were carried out in  double precision on 

a n  IBM 3081 a t  Brown University. We gratefully acknowledge the assistance of Yun 

Wang in  our carrying out of the extensive computational studies reported for  the 

boundary f lux  control in  the diffusion equation problem of Example 2 below. 

Example 1: As one of our examples, we considered an  example (Example 6 of [27]) 

which Laub  used to test his Schur based methods. The  system is the n-dimensional 

system of (1.1) with 

which 

A =  

1 
0 

0 
1 

0 

c =  [ I  0 .  . . o  

leads to a n  ill conditioned 

1 
Riccati equation. This  problem corresponds to one 

in  which n integrators a re  connected in series with a feedback controller to be 

applied to  the nth integrator i n  order to stabilize the system. Only deviations of x1 

f rom the  origin a re  penalized in  the cost functional.  The  t rue optimal gain is a n  n 

vector K = (E1, . . . , K") and  fo r  this example one can argue that  = 1. In [27], 
- 

Laub used his Schur techniques to study this example and  reported difficult ies with 
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loss of accuracy a t  a relatively low value of n, n = 21. We carried out runs with 

our hybrid algorithm and  obtained quite favorable performance. Some of our findings 

included: 

(a) For  n = 40, we used the Chandrasekhar component to integrate to t, = 100 and  

produce a n  initial estimate KA = .99041, which when used in  the Newton-Kleinman 

(fixed step size r = .5 in  the Smith) produces the estimate K: = 1.0 - i n  a total of 

2.93 seconds of CPU time. When we used a cruder solution in  the Chandrasekhar 

component (tr = 200 but  with step size twice that  in  the f i rs t  run) to produce KA = 

.9394, followed by the N - K (r l  = .5, r2  = 1.0 in  the variable step Smith) we 

obtained K i  = 1.0 -, all in 2.39 seconds. 

(b) For n = 50, we produced KA = .9224745 a t  tf = 220 and  af te r  the N-K-Smith 

(fixed step r = .5 in  the Smith) obtained K: = 1.0000000003820 in a total of 4.44 

CPU seconds. For  the same runs with variable step ( r l  = .5, r 2  = .7) Smith we 

obtained a K: 

(c) We compared runs with the Chandrasekhar component only against the Potter 

method for  n = 10, 21, 40. Obtaining essentially the same estimates fo r  n = 10 and  

21 (at n = 40, the Potter degenerates numerically to produce useless estimates) we had 

as above with 3820 rcplaced by 3817 in  a total of 4.31 seconds. 

CPU times of CHn,lo = .753 seconds, POTTnZlo = .188 seconds, CH,,21 - - 1.52 

seconds, POTTn=21 = 1.22 seconds, CHn,40 = 4.35 seconds, POTTn=40 = 6.81 seconds. 

We found fo r  this example that the eigenvector methods a re  best fo r  small 

n, but  as n grows, the Chandrasekhar alone, and, even more so, the  hybrid method 

will out perform the eigen-Schur methods in both accuracy and  CPU times. A more 

striking demonstration of this behavior will be given in  the next example. 

Example 2: We consider the l inear quadratic regulator problem: minimize the cost 

functional 
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(5.2) J(u) = I W t )  I + lu(t) I2)dt 

subject to the  par t ia l  different ia l  equation 

(5.3) -z(t,x) a = - a2 z(t,x) , x E (0,l) 
at ax2 

z(0,x) = @(x) 

with boundary conditions 

- a z(t,O) = u(t) and -z(t,l) a = 0 ax ax (5.4) 

where c(.) is square integrable on [0,1] and  

Cz(t) = I ~ C ( X )  z(t,x) dx 

We can discretize or approximate (5.3)-(5.4) using the s tandard Galerkin method 

i.e. the  approximating solution zN(t,x) to (5.3)-(5.4) is given by 

N 

i=O 
(5.5) zN(t,X) = E wi(t)l i ( ~ )  , wi(t) E R’, 

where P i  = 1: is the f i rs t  order spline defined by 

0 otherwise 

and  zN(t,x) satisfies 

11% zN(t,x)$N(x)dx = - r” oax  z N a Q N  ax d x  - u(t)$yO) 

for  all $N E ZN=span {c ,q,  . . . , C 1 . 

Then, (5.6) leads to the nth order (n = N + 1) ordinary different ia l  equation fo r  

wN = col(wo, . . . , WN) ; 

(5.7) QNwN(t) = -HNwN(t) - BNU(t) 
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N - 1  
- N  

where 
c - 

1/3 1/6 0 . 0 
1/6 2/3 1/6 
0 .  

with Q: =ll+Rjdx , ; 0 0 
1/6 2/3 1/6 

0 .  0 1/6 1/3 

- 
1 - 1  0 .  . 0 

0 
- 1  2 - 1  

0 
- 1  2 - 1  

0 . . 0 - 1  1 
A I 

HN = N with HG = l:$ d - kdx , 
d x  J 

and  
BN = C O ~  (1 0 . . . 0) 

For computational convenience, we change coordinates ( for  f ixed N) in  the 

system (5.7) by x = QNwN to obtain the approximate system 

X = -"(Q~)-~x - B~ u . 
Thus, in  (1.1) we have A = -HN(QN)-', B = -BN and  C = CN(QN)-' where CN is the 

vector with components CN = c(x)Ri(x)dx, 0 < i < N. 

For  the problem in this example, the approximating optimal feedback 

operator KN is given [2] by: 

KNz = JA kN(x)z(x)dx 
N 

i = l  
where kN(x) = C kiRi(x) and  K = (ko, . . . , kN) is the optimal feedback solution in  

the problem for  (1.1) with A, B, C chosen as indicated above. We note in  this case 

that  fo r  any  N 2 1, A has only one unstable eigenvalue (zero), (A,B) is stabilizable, 

and  (A,C) is detectable. 

For the special case when c(x) = 1, we f ind  C = (1, . . . , 1) E R1x(N+') and  

hence CA = 0. It is thus easy to see that  the desired solution (K(t),L(t)) to the 

Chandrasekhar system (1.3) is given by 
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K(t) = k(t)C , L(t) = P(t)C, 

where k,P a r e  scalar functions satisfying 

k = 3 , k(0) = 0 

P = -1k , P(0) = 1 . 

Therefore we f ind  kk + h 1  = 0 so that k2(t) + I2(t) = 

t ha t  k(t) -, 1 as t -, -Q) and hence K = limK(t) 

. We thus f i n d  i n  this case 

= C. For this case, the 

Chandrasekhar system fo r  the infinite dimensional LQR problem (5.2)-(5.4) can also 

be analyzed [17], [ 3 6 ]  and exactly the same argument as above shows the optimal 

feedback gain operator is given by 

KZ = 1 .z(x)dx . 

These analytic solutions can be used to  test software packages and  approximation 

schemes before more interesting, analytically intractable examples are considered. 

Remark:  The  form (5.7) of system equations appears frequently in  applications. Thus 

the critical computational factor (5.1) can be modified so that one can avoid 

computing A. For example, in  this case i t  has the form 

L(I - r ( - H Q - ~  - B K ) ) - ~  
(5 .8 )  

= LQ(Q + rH + rBKQ)-' 

where Q + rH is a symmetric, tridiagonal, positive matrix. Thus one can readily use 

the Cholesky decomposition algorithm f o r  computing LQ(Q + rH)-l and  combine this 

with the Sherman-Morrison-Woodbury formula (see Remark 3 of Section 2) to  

efficiently compute the critical expression (5.8). 

We carried out extensive computations fo r  this example with c(x) = 1 + x. 

We compared our hybrid method to the Potter algorithm and to use of the 

Chandrasekhar system alone. We have not used the Laub-Schur method on this 

example since we felt  comparison with a readily available (to us) Potter package 

would give as a feel fo r  the relative advantages and  disadvantages of our scheme 
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compared to eigen and  Schur vector based techniques. (Analysis and  computational 

experience indicate that  the Potter method and  the Laub-Schur method are  both 

O(N3> with the latter method about twice as fas t  as the Potter method.) We required, 

whenever feasible, the same level of accuracy in  computation of feedback gains and  

compared relative CPU times. 

I n  studying our hybrid scheme, we tested numerous sets of Smith 

acceleration parameters (rj), (kj), stopping times tf in the Chandrasekhar component 

and  error stopping criteria in  both the Chandrasekhar and  Newton-Kleinman-Smith 

components. We summarize some of our findings to date. 

I n  Table 5.1 we present comparative CPU times for  the hybrid scheme vs. 

Potter as we increase N. Recall the corresponding f ini te  dimensional approximation 

scheme has system with dimension n = N+1. I n  all of the runs reported in  Table 5.1, 

the feedback gains fo r  the hybrid and  Potter calculations agreed to 9 decimal places 

- N Hvbrid (CPU Sec.) Potter (CPU Sec.) 

10 
20 
30 
40 
50 
60 
70 
80 

100 
120 
140 
160 

.17 

.3 1 

.56 

.74 

.9 1 
1.09 
1.26 
1.43 
1.76 
2.10 
2.45 
2.80 

.14 

.8 1 
2.45 
5.49 

10.7 1 
18.09 
27.97 
41.56 

Table 5.1 

so both scemes provided accurate solutions. In  these runs, the hybrid scheme 

calculations used tf = 2.2 (corresponding to h = . l )  with lL(-tf)) = in  the 

Chandrasekhar component. The  Newton-Kleinman component converged a f t e r  4 

1 i terations (i.e. a t  K4) and  we uscd acccleration steps r l  = 1, r 2  = 10- , r3 = 

r4  = lo-’ . Each Smith i teration was allowed a maximum of k j  = 50 per value of r j  
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although in  most cases the iteration satisfied a convergence cri terion before this 

maximum was attained. Careful  consideration of Table 5.1 reveals that  the hybrid 

scheme is clearly O(N) while the Potter is O(N3); both rates a re  to be expected f rom 

our earlier observations about the methods. Note that a t  N = 80 the hybrid scheme 

is more than  25 times faster than the Potter scheme (with comparable accuracy, of 

course). 

We also ran  the hybrid scheme with N = 80 and  a number of different  

f ixed acceleration values r in  the Smith component. The  same Chandrasekhar 

component prameters as reported above were used. Table 5.2 contains relative CPU 

times as well as an  indication of the N-K iterate fo r  which convergence was 

achieved. 

I n  Table 5.3 we list some CPU times when d i f fe ren t  sets of acceleration 

parameters {rj} were used. Again these runs were fo r  N = 80 with the same 

r 

5 
1 

- 

1 0-1 
10-2 
1 o - ~  
1 o - ~  

Cpu (Sec.) Converged N-K Gain  

5.10 
6.52 
6.27 
7.40 
0.10 
2.06 
0.07 

Table 5.2 

r - Cpu (Sec.) 

(10-1, 10-2) 6.25 
(1, 10-1, 10-2) 4.88 
(1, io-l, 1.98 
( I ,  io-l, 10-3, io-s, io-6, io-’) 1.61 

Table 5.3 

Chandrasekhar solution as above. All of the converged Newton-Kleinman iterates were 

a f t e r  6 steps (Le. K6). 

Finally,  we made runs (for N = 80) to f ind  the best results that  the 
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Chandrasekhar algorithm alone ( ix .  accurate integration until  K(t) K, L(t) + 0) 

could produce. The  best results we were able to achieve yielded an  accurate value of 

K fo r  K(-tf) with tf = 3.22 with IL(tf)I = obtained in  5.85 CPU seconds. 

Based on our computational f indings fo r  the above two examples and  our  

experience with several other examples fo r  inf ini te  dimensional systems (e.g., beams 

with t ip bodies, etc.), we are  quite confident that  the hybrid scheme we propose in  

this paper can be profitably used with a number of large scale LQR problems. We 

are  currently developing a rather general software package that  implements the 

hybrid scheme i n  a manner so that  a broad range of problems can be treated in  the 

context of the ideas presented here. 
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LO. Abstract 

We propose a h y b r i d  method f o r  computing t h e  feedback g a i n s  i n  l i n e a r  
[ u a d r a t i e  r e g u l a t o r  problems. The method, which combines use  of a Chandrasekhar  
t y p e  system w i t h  an  i t e r a t i o n  of t h e  Newton-Kleinman form w i t h  v a r i a b l e  
a c c e l e r a t i o n  parameter Smith schemes, i s  fo rmula t ed  so  as t o  e f f i c i e n t l y  compute 
d i r e c t l y  t h e  feedback g a i n s  r a t h e r  t h a n  s o l u t i o n s  of an a s s o c i a t e d  Riccati 
e q u a t i o n .  The h y b r i d  method i s  p a r t i c u l a r l y  a p p r o p r i a t e  when used w i t h  l a r g e  
d imens iona l  sys tems such  as t h o s e  a r i s i n g  i n  approximat ing  i n f i n i t e  d imens iona l  
( d i s t r i b u t e d  parameter )  c o n t r o l  s y s t e m s  (e.g., t h o s e  governed by de lay-  
d i f f e r e n t i a l  and p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s ) .  Computat ional  advantage  of 
o u r  proposed a l g o r i t h m  o v e r  t h e  s t a n d a r d  e i g e n v e c t o r  ( P o t t e r ,  Laub-Schur) based  
t e c h n i q u e s  a r e  d i s c u s s e d  and numer ica l  ev idence  of t h e  e f f i c a c y  of o u r  i d e a s  
p r e s e n t e d .  
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